

Сценарий управления

для программируемого логического контроллера ВЭСТ-02М

2-X КОНТУРНЫЙ ТЕПЛОВОЙ УЗЕЛ ОТОПЛЕНИЯ И/ИЛИ ВОДОПОДГОТОВКИ СИСТЕМЫ ВЕНТИЛЯЦИИ

Указания по технике безопасности

К эксплуатации, монтажу и техническому обслуживанию программируемого логического контроллера (ПЛК) допускаются квалифицированные лица, которые имеют право осуществлять работы в соответствии с установленной практикой и стандартами техники безопасности.

ПЛК является источником опасного производственного фактора – напряжение в электрических цепях, замыкание которых может произойти через тело человека.

Не открывайте контроллер, не производите подключение проводов, если питающее напряжение контроллера не отключено.

После отключения питающего напряжения на клеммах в течении 10 секунд может оставаться опасный потенциал.

Если питание контроллера отключено, на других клеммах контроллера может остаться напряжение от других внешних источников.

Оглавление

Введение	4
1 Работа прибора в составе системы	5
2 Программируемый логический контролдлер ВЭСТ-02М	6
2.1 Индикация	6
2.2 Управление	6
3 Регулирование температуры в контуре отопления	8
3.1 Регулирование по температуре наружного воздуха по точкам	8
3.2 Поддержание температуры воды в обратном трубопроводе	8
3.3 Часовая компенсация	9
3.4 Аварийные ситуации	10
4 Управление циркуляционными насосами	10
5 Формирование сигналов управления регулирующим клапаном	11
5.1 Динамические параметры регулятора	11
5.2 Рекомендация по настройке динамических параметров регулятора	11
5.3 Ручное управление приводами клапанов	12
6 Прочие функции	13
6.1 Дополнительные температуры и датчики давления	13
6.2 Архивы	13
6.3 Взаимодействие со SCADA и HMI	13
Приложение А. Схема системы отопления	14
Приложение Б. Схема подключения прибора	15
Приложение В. Программируемые параметры	17
Приложение Г. Таблица регистров	21

Введение

Настоящее документация предназначена для ознакомления обслуживающего персонала со сценарием работы автоматического регулятора ВЭСТ-02М (далее по тексту – «прибор», «ВЭСТ-02М» или «контроллер»).

Прибор программируется для работы с одним из типовых сценариев на этапе выпуска производителем. Самостоятельное составление сценариев возможно на графическом языке программирования FBD (с помощью функциональных блоковых диаграмм) в бесплатной программной среде «АКИАР» производства ООО «НПО ВЭСТ».

В процессе работы сценарий может быть доработан и улучшен, могут быть добавлены новые пункты меню, новые функции.

Программируемый логический контроллер (ПЛК) ВЭСТ-02М управляет двумя контурами водоподготовки в системе вентиляции. Такой регулятор может использоваться для фасадного режима регулирования.

В системе реализовано два одинаковых теплоузла.

ВЭСТ-02М регулирует температуру в контуре с помощью регулирующего клапана с электроприводом по температуре наружного воздуха. Также происходит регулировка температуры обратной воды, для избежания штрафов от энергоснабжающих организаций.

Данное руководство соответствует сценарию VEST_02M_05_02 ver_3.

Дата последней редакции руководства: 22.09.2025 г.

Для обновления прибора до последней версии сценария можно обратиться в службу поддержки НПО ВЭСТ:

e-mail: info@npowest.ru тел.: +7-913-875-59-04 +7 (3822) 400-733

сайт: www.npowest.ru

Если при использовании данного руководства у вас возникли вопросы или вы обнаружили неточности, пожалуйста, сообщите нам любым удобным способом:

по электронной почте: konstr.info@npowest.tom.ru

в Telegram: **+7 913-101-74-40**

или отсканируйте QR-код:

1 Работа прибора в составе системы

В составе системы прибор регулирует температуру в контуре отопления с помощью регулирующего клапана с электроприводом по температуре наружного воздуха, измеряемой датчиком температуры $T_{\text{наруж}}$. Одновременно с температурой воды в подающем трубопроводе, измеряемой датчиком $T_{\text{под}}$, контролируется температура обратной воды, измеряемой датчиком $T_{\text{обр}}$, для того чтобы обеспечить защиту системы от превышения ею недопустимого значения температуры обратной воды в контуре отопления.

Регулирование температуры отопления осуществляется с помощью регулирующего клапана с электроприводом. Сигнал с датчика температуры Т^{отоп}под, который установлен за теплообменником, подается на ПЛК. Для дополнительного контроля над температурой возвращаемого в теплосеть теплоносителя, проходящего через теплообменник, установлен датчик Т^{отоп}обр

По результатам измерений прибор формирует сигналы управления двумя регулирующими клапанами, один из которых служит для поддержания заданной температуры в контуре отопления, а другой – в контуре отопления.

2 Программируемый логический контролдлер ВЭСТ-02М

2.1 Индикация

Светодиодные индикаторы на лицевой панели прибора (см. руководство по эксплуатации автоматического регулятора ВЭСТ-02М) в случае данного «сценария» сигнализируют о следующем:

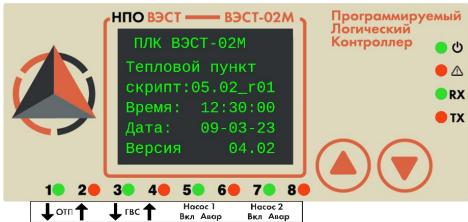


Рисунок 1 – Лицевая панель ВЭСТ-02М

- закрытие регулирующего клапана отопления;
- **2** открытие регулирующего клапана отопления;
- **3** закрытие регулирующего клапана отопления;
- **4** открытие регулирующего клапана отопления;

- **5** работа основного циркуляционного насоса отопления;
- **6** авария основного циркуляционного насоса отопления;
- **7** работа резервного циркуляционного насоса отопления;
- **8** авария резервного циркуляционного насоса отопления;

७ – индикатор работы ПЛК.

RX/TX – прием/передача данных через СОМ порт.

2.2 Управление

Управление прибором производится при помощи сенсорных/нажимных кнопок, расположенных на лицевой панели прибора.

При подаче напряжения питания на прибор через 5 секунд на дисплее появляется главное меню (по умолчанию – с отображением наименованиями модели ПЛК и сценария; текущего времени и дня недели).

Сенсорные кнопки управления имеют следующее функциональное назначение:

	горизонтальный переход назад по разделам главного меню, горизонтальный переход			
	по пунктам в пределах выбранного раздела. Изменение значения выбранного			
	параметра в сторону увеличение;			
	горизонтальный переход вперед по разделам главного меню, горизонтальный переход			
\triangle	по пунктам в пределах выбранного раздела. Изменение значения выбранного			
I	параметра в сторону уменьшения;			

одновременное нажатие: вертикальный переход из раздела в пункты, вход в режим изменения значения параметра и сохранение данных изменений.

Уважаемый пользователь! Сенсорные/нажимные кнопки для увеличения или уменьшения параметров работают следующим образом: правая стрелка увеличивает параметр, левая стрелка уменьшает параметр.

Будьте внимательны, направление стрелок указывает на направление перемещения по разделам меню.

Сенсорные/нажимные кнопки реагируют в том случае, если нажатие на них происходит в течении 0,5-0,7 секунд. Такое управление необходимо, чтобы прибор успевал понять, нажата одна кнопка или две одновременно.

Прибор автоматически осуществляет возврат в главное меню, если после выбора любого из разделов, пунктов меню прибора, вход в режим изменения значения параметра пользователь не производит нажатия любой из кнопок в течение 25 секунд.

Автоматический возврат не осуществляется, если пользователь перевел прибор в режим изменения параметра измеренных значений.

3 Регулирование температуры в контуре отопления

3.1 Регулирование по температуре наружного воздуха по точкам

Управление температурой воды в системе отопления в соответствии с температурным графиком, СанПиН и СНиП. Установка графика выполняется при помощи двух точек.

Твнеш.1 – значение точки 1 на оси внешней температуры;

Тпод.1 – значение точки 1 на оси температуры подачи;

Твнеш.2 – значение точки 2 на оси внешней температуры;

Тпод.2 – значение точки 2на оси температуры подачи.

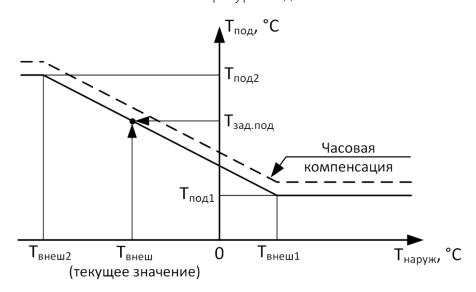


Рисунок 2 – Определение заданной температуры прямой воды системы отопления по точкам

3.2 Поддержание температуры воды в обратном трубопроводе

При регулировании температуры в контуре отопления прибор одновременно с температурой воды в подающем трубопроводе контролирует и температуру обратной воды, возвращаемой в теплоцентраль, обеспечивая защиту системы от превышения ею заданного значения $T^3_{\text{обр.}}$

Поддержание $T^3_{oбp}$ является приоритетным по отношению к регулированию T^3_{nod} .

Заданное значение температуры теплоносителя в обратном трубопроводе $T^3_{\text{обр}}$, является величиной переменной и вычисляется по графику $T^3_{\text{обр}} = f (T_{\text{наруж}})$ (рисунок 3), который установила Энергоснабжающая организация.

В аналитическом виде выражается, как:

$$T^{3}_{o6p} = \left(T_{Hapyx} - T^{min}_{Hapyx}\right) \cdot \left[\left(T^{max}_{o6p} - T^{min}_{o6p}\right) / \left(T^{max}_{Hapyx} - T^{min}_{Hapyx}\right)\right] + T^{min}_{o6p}. \tag{2}$$

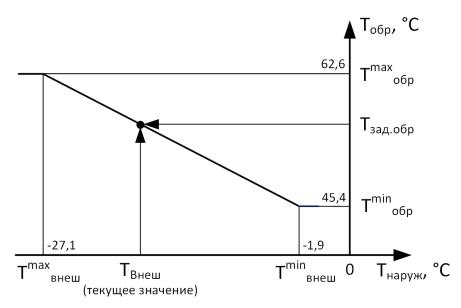


Рисунок 3 – Определение заданной температуры обратной воды системы отопления

Данный температурный график задается двумя точками с координатами:

Твн.min – минимум температуры наружного воздуха;

Тобр.min – минимум температуры обратной воды;

Твн.тах – максимум температуры наружного воздуха;

Тобр.тах – максимум температуры обратной воды.

Если в процессе работы температура обратной воды по какой-либо причине превысит значение $T^{max}_{oбp}$, вычисленное по графику (рисунок 2.3), то прибор переводит систему в режим защиты от перегрева воды, что бы насосы не гоняли избыточное тепло. При этом прибор прерывает регулирование температуры в контуре отопления по уставке T^{3}_{nod} и, для снижения завышенной $T_{oбp}$, начинает закрывать регулирующий клапан.

Таким образом датчик работает по двум параметрам (условиям):

1-ое: если температура обратного водоснабжения располагается до $T^3_{oбp}$, то система подаёт горячую воду;

2-ое: если температура обратного водоснабжения становится выше $T^3_{\text{обр}}$, то система перестаёт подавать горячую воду, тем самым опускает температуру в область до $T^3_{\text{обр}}$ и ниже.

3.3 Часовая компенсация

В приборе предусмотрена возможность перевода системы отопления в специальный режим часовой компенсации, который позволяет сдвинуть вверх или вниз температурный график уставки температуры теплоносителя в подающем трубопроводе отопления (График подачи) для сокращения потребления тепловой энергии в периоды, когда это допустимо (например, в офисных помещениях в выходные дни или во время отсутствия персонала, а также в жилых домах в ночное время).

В этом режиме график задания уставки контура отопления сдвигается автоматически, на заданную величину в заданный период времени суток (по часам) в зависимости от дня недели.

Настройка параметров часовой компенсации осуществляется при программировании соответствующих параметров в разделе меню «Часовая компенсация».

Часовая компенсация включена, если значения **Нач.комп** и **Кон.комп** находятся в диапазоне от 0...23.

Часовая компенсация выключена, если значения **Нач.комп** и **Кон.комп** находятся в диапазоне от 24...25.5.

Рабочие или **Выходные** дни – выбор типа дней недели для использования компенсации **Нач. комп** – час начала действия компенсации, настраивается в диапазоне от 0 до 23 часов; **Кон.комп** – час конца действия компенсации, настраивается в диапазоне от 0 до 23 часов; **Знач.комп** – значение температуры компенсации, настраивается в диапазоне от -20 до +20 °C.

Если часовая компенсация не нужна, тогда данные времени можно заполнить нулями.

3.4 Аварийные ситуации

В приборе также предусмотрена аварийная уставка температуры обратной воды (Контур теплопотребления), равная 20 °С. Если выполняется условие $T_{\text{обр.}}$ «Вавар», прибор вырабатывает управляющие сигналы на открытие регулирующего клапана. После возврата температуры $T_{\text{обр.}}$ в допустимые пределы прибор переходит в режим нормального регулирования.

Тоб.авр – аварийная температура обратной воды.

Фиксация аварии **«Сухой ход» (dry)** происходит в том случае, если в системе нет воды. В системе может возникнуть авария из-за перепадов давления и происходит фиксация «Авария двигателей».

4 Управление циркуляционными насосами

Схема включения насосов должна предусматривать подачу питающего напряжения через контакты реле (см. Приложение Б)

В приборе предусмотрено программное переключение циркуляционных насосов с основного на резервный два раза в сутки в 12:00 и в 00:00.

5 Формирование сигналов управления регулирующим клапаном

5.1 Динамические параметры регулятора

Управление клапанами (контура отопления) производится одинаковым широтноимпульсным способом по независимым пропорционально-интегрально-дифференциальным (ПИД) законам регулирования.

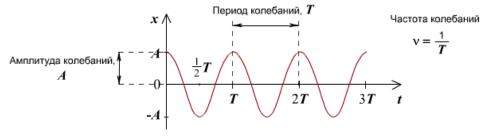
Динамические параметры настройки ПИД-регулятора:

Вр.демпф – время демпфирования, определяет время усреднения измеряемых параметров;

Время об – постоянная времени объекта;

Вр.возд – параметр определяет длительность воздействия управляющего импульса на регулирующий клапан.

Упр. ТУ – ручное управление клапаном системы отопления.


Utu 0-100/Ugw 0-100 — Управляющее воздействие, при использовании клапана с управлением 0-10В.

Производителем устанавливаются параметры настройки ПИД-регулятора, обеспечивающие нормальный процесс регулирования для большинства систем отопления. Уточнение и корректировка значений параметров производятся при наладке регулирующего комплекса и в процессе эксплуатации. Упрощенная методика настройки описана ниже.

5.2 Рекомендация по настройке динамических параметров регулятора.

Перед началом настройки следует вывести систему из равновесия, вынудить колебаться, увеличив время воздействия до максимума (следует убедиться, что это безопасно для техпроцесса) и определить дополнительные параметры:

Период колебаний (Т) – время, в течение которого клапан производит одно колебание при регулировании объекта.

Время работы привода (t_{np}) – время, которое требуется приводу, чтобы перейти из открытого состояния и закрытое (Должно быть написано в паспорте или на шильдике устройства).

Настройку динамических параметров рекомендуется производить следующим образом:

- 1. Задать время объекта (прибл. больше в 2-3 раза чем период колебаний): to6=2..3*T.
- 2. Определить время воздействия. Выставить параметр «Вр. возд» прибл. меньше в 5-6 раз, чем время работы привода для приблизительной настройки (tвозд=tпр/5..6). Для более точной настройки следует уменьшать значение в два раза, определяя приемлемую величину интервала, в котором работает объект, а затем производить меньшие изменения до конченого результата.

3. Проверить результат. Для систем теплоснабжения величина перерегулирования может считаться нормальной, если она составляет приблизительно 5-10%, для систем отопления до 30%, поскольку система более быстродействующая.

Время демпфирования приблизительно в 10-20 раз меньше времени объекта (t_{демпф}=t_{об}/10..20). Параметр определяет плавность регулирования, при его увеличении, регулирование будет происходить «плавнее», но при этом время реакции управляющего сигнала тоже увеличится.

Если выставить время воздействия маленькое, а время объекта большое, то медленно, но точно будут настраиваться все объекты.

Параметры по умолчанию позволяют стабильно регулировать системой теплоснабжения, потому что большие воздействия невозможны.

5.3 Ручное управление приводами клапанов.

Сигнал управления клапанами можно сформировать вручную (например, для проверки состояния системы по месту). Положения клапана осуществляется с помощью параметров «Упр. ТУ» для контура отопления (в меню «Контур тепла → Параметры ПИД.»).

Упр. ТУ – ручное управление клапаном системы отопления.

В результате можно выбрать 4 состояния приводов:

- 0. Автоматический режим работы.
- 1. Сигнал на открывание клапана.
- 2. Сигнал на закрывание клапана.
- 3. Фиксированное положение привода.

6 Прочие функции

6.1 Дополнительные температуры и датчики давления

К незадействованным аналоговым входам (29, 30, 31) имеется возможность подключения дополнительных датчиков. Данные датчики не влияют на технологический процесс. В случае неиспользования датчиков давления, для корректной работы сценария необходимо установить перемычки между клеммами 23 и 30, 31.

В меню регулятора они отображаются как:

Т. доп1 – дополнительная температура 1 (вход 29);

Давл. Р1 % – Датчик давления 1 (вход 30);

Давл. Р2 % – Датчик давления 2 (вход 31).

6.2 Архивы

Регулятор записывает архивы температур: внешней, подачи отопления, обратной воды отопления, обратной воды отопления. Дискретизация определяется параметром «Дискрет.» в меню «Сервис. Системн. парам», подробнее в руководстве для прибора.

6.3 Взаимодействие со SCADA и HMI

ПЛК ВЭСТ-02М совместим со SCADA системами, поддерживает Modbus протокол. При использовании системы диспетчеризации НПО ВЭСТ, по умолчанию на мнемосхему выводятся 5 регистров (Рисунок 6.1). Есть возможность выводить и другие Modbus регистры, список регистров приведен в Приложение Г.

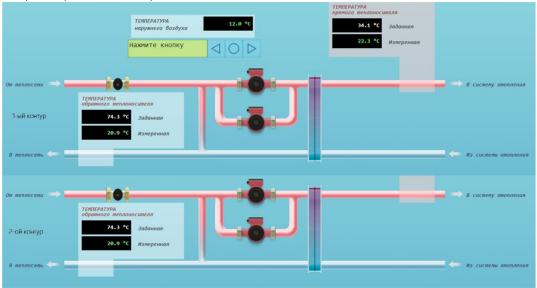


Рисунок 4 – Мнемосхема системы отопления

Приложение А. Схема системы отопления

(справочное)

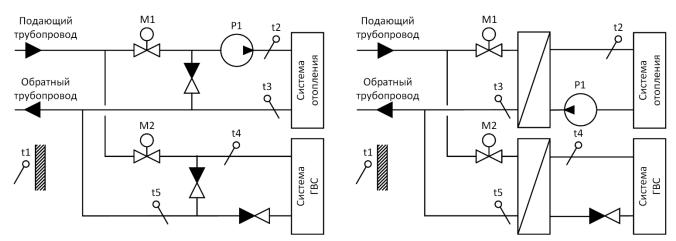


Рисунок А.1 – Типовые схемы присоединения системы отопления

Обозначения:

- **t1** датчик температуры наружного воздуха;
- t2 датчик температуры прямой воды системы отопления;
- t3 датчик температуры обратной воды системы отопления;
- t4 датчик температуры прямой воды системы отопления;
- t5 датчик температуры обратной воды системы отопления;
- **M1** электропривод регулирующего клапана системы отопления (клемма 7 «закрытие», клемма 9 «открытие»);
- **M2** электропривод регулирующего клапана системы отопления (клемма 10 «закрытие», клемма 12 «открытие»);
- **Р1** циркуляционный насос.

Приложение Б. Схема подключения прибора

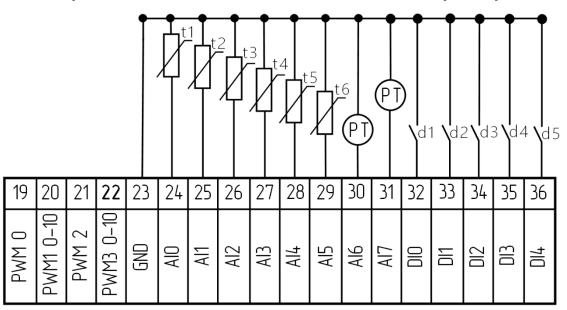


Рисунок Б.1 – Схема подключения верхней клеммной колодки

- t1 датчик температуры наружного воздуха;
- t2 датчик температуры прямой воды P2 датчик давления P2; системы отопления;
- t3 датчик температуры обратной воды системы отопления;
- **t4** датчик температуры прямой воды системы отопления;
- t5 датчик температуры обратной воды (дискретное); системы отопления.
- **t6** датчик дополнительной температуры 1;

- **Р1** датчик давления Р1;
- **d1** реле давления (авария сухого хода);
- d2 реле перепада давления (авария двигателя);
- **d3** авария (дискретное);
- **d4** фиксация дополнительного события
- **d5** фиксация дополнительного события (дискретное).

Примечание:

- 1. В случае отсутствия датчика температуры обратной воды системы отопления (t5), необходимо установить перемычку между клеммами 28 и 23.
 - 2. Входа 30 и 31 (Р1, Р2) датчики давления 4-20 мА.
 - 3. Входа 32 и 33 (d1, d2) дискретные датчики при неиспользовании замкнуть на землю (23).
 - 4. Вход 34 (d3) обозначение аварии, используется только в качестве индикации.
- 5. Входа 35 и 36 могут быть задействованы для фиксации событий, их можно отслеживать в диспетчерской, при неиспользовании замкнуть на землю (23).

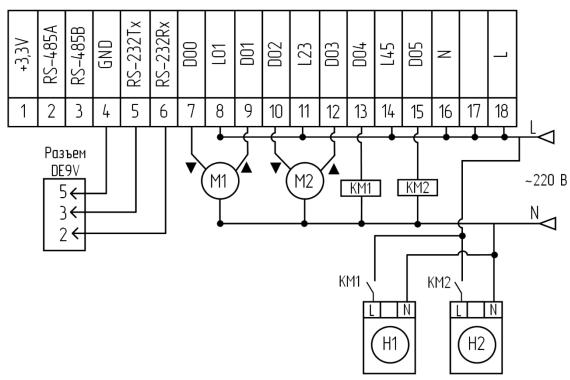


Рисунок Б.2 – Схема подключения нижней клеммной колодки

M1 — электропривод регулирующего клапана системы отопления (клемма 7 — «закрытие», клемма 9 — «открытие»).

M2 — электропривод регулирующего клапана системы отопления (клемма 10 — «закрытие», клемма 12 — «открытие»).

КМ1, КМ2 – катушки магнитного пускателя.

Приложение В. Программируемые параметры

Таблица В.1 – Программируемые параметры сценария

Обозначение	Комментарий	Единицы измерения	Диапазон значений	Значение по умолчанию
	Контур тепла 1			
Зад.Тпод	Заданная температура прямой воды	°C	-	Расчетное
Тем.под	Температура подачи	°C	- Измеренное	
Зад.Тобр	Заданная температура обратной воды	°C	- Расчетное	
Тем.обр	Температура обратной воды	°C	-	Измеренное
Ошибка	Ошибка рассогласования (Зад.Тпод- Тем.под)		- Расчетное	
Тем.внеш	Температура внешнего воздуха	°C	-	Расчетное
График Тподачи	Параметры настройки графика	а Тподачи		
Твнеш.1	Значение точки 1 на оси внешней температуры	°C	-4020	0
Тпод.1	Значение точки 1 на оси температуры подачи	°C	2080	52,0
Твнеш.2	Значение точки 2 на оси внешней температуры	°C	-600	-27,0
Тпод.2	Значение точки 2 на оси температуры подачи	°C	20100	80,0
Зад.Тпод	Заданная температура прямой воды	й °C - Расчетное		
Обозначение	Комментарий	Единицы измерения	Диапазон значений	Значение по умолчанию
График Тобр. задан ной	Параметры настройки регулятора			
Твн.min	Точка минимума внешней температуры	°C	-4020	18
To6.min	Точка минимума обратной температуры	°C	2080	30
Твн.тах	Точка максимума внешней температуры	°C	-600	-40

Продолжение таблицы В.1

		<u>'</u>	тродолжение і	иолицы Б.Т
Тоб.тах	Точка максимума обратной температуры	°C	2080	62
Зад.Тобр	Заданная температура обратной воды	°C	-	Расчетное
Часовая компенсация	Параметры настройки регулятора			
Рабочие дни				
Нач.комп	Начало компенсации	час	025,5	18
Кон.комп	Конец компенсации	час	025,5	5,3
Знач.ком	Значение компенсации	°C	-2020	-1
Выходные дни				
Нач.комп	Начало компенсации	час	025,5	0,1
Кон.комп	Конец компенсации	час	025,5	23,9
Знач.ком	Значение компенсации	°C	-2020	1
Время.Дв	Время разгона двигателя до перепада давления	сек	152,1	10
Параметры ПИД	Динамические параметры регулятора			
Вр.дмпф	Время демпфирования	МС	0,526	20
Врем. об.	Постоянная времени объекта управления	МС	203000	400
Врм.возд	Время воздействия	МС	10300	35
Упр. ТУ.	Ручное управление клапаном системы отопления: 0-Авто; 1-Откр; 2-Закр; 3-Фикс.		0255	0
Utu 0-100	Управляющее воздействие, при использовании клапана с управлением 0-10В	%	0-100	0
Тоб.авр	Аварийная температура обратной воды	°C	1040	20
	Контур тепла 2	2		
Зад.Тпод	Заданная температура подачи	°C	-	Расчетное
Тем.под	Температура подачи	°C	-	Измеренное
Зад.Тобр	Заданная температура обратной воды ГВС	°C	-	Расчетное
Тем.обр	Температура обратной воды ГВС	°C	-	Измеренное

Продолжение таблицы В.1

Обозначение	Комментарий	Единицы измерения	Диапазон значений	Значение по умолчанию
Ошибка	Разность заданной и измеренной температур подачи.	°C	-	Расчетное
Тем.внеш	Температура внешняя	°C	-	Измеренное
График Тпод. заданной	Параметры настройки регулятора			
Твнеш.1	Значение точки 1 на оси внешней температуры	°C	-4020	0
Тпод.1	Значение точки 1 на оси температуры подачи	°C	2080	52,0
Твнеш.2	Значение точки 2 на оси		-27,0	
Тпод.2	Значение точки 2 на оси		80,0	
Зад.Тпод	Заданная температура прямой воды	°C	-	Расчетное
График Тобр. заданной	Параметры настройки регулят	ора		
Твн.min	Точка минимума внешней температуры	°C	-4020	0
To6.min	Точка минимума обратной температуры	°C	2080	60
Твн.тах	Точка максимума внешней температуры	°C	-600	-27
Тоб.тах	Точка максимума обратной температуры	°C	2080	62
Зад.Тобр	Заданная температура обратной воды	°C	-	Расчетное
Параметры ПИД	Динамические параметры регулятора			
Вр.дмпф	Время демпфирования	МС	0,526	10
Врем. об.	Постоянная времени объекта ис 10		103000	100
Врм.возд	Коэффициент усиления	МС	0,5200	5

Продолжение таблицы В.1

			JAONACHINE I	9.97
Упр. ГВС.	Ручное управление клапаном системы ГВС: 0-Авто; 1-Откр; 2-Закр; 3-Фикс.		0255	0
Ugw 0-100	Управляющее воздействие, при использовании клапана с управлением 0-10В	%	0-100	0
	Измеренные значе	ения		
Тем.внеш	Температура внешнего воздуха	°C	-	Расчетное
Тем.пд1	Температура подачи	°C	-	Измеренное
Тем.об1	Температура обратной воды	°C	-	Измеренное
Тем.пд2	Температура подачи	°C	-	Измеренное
Тгвс.об2	Температура обратной воды ГВС	°C	-	Измеренное
Т.доп1	Дополнительная температура 1	°C	-	Измеренное
Давл. Р1 %	Датчик давления 1	%	-	Расчетное
Давл. Р2 %	Датчик давления 2	%	-	Расчетное
Pmax. 1	Диапазон измерения датчика давления 1	кПа/бар	-	1600/16
Pmax. 2	Диапазон измерения датчика давления 2 кПа/бар - 1600/16			
Давл. Р1	Датчик давления 1	бар	-	Расчетное
Давл. Р2	Датчик давления 2	бар	-	Расчетное
Твн. установочное	Вн т, которую считать в случае обрыва датчика	°C	-510	-20
Кор. Твн.	Ручная корректировка t _{вн}	°C	-1212	0

Приложение Г. Таблица регистров

Таблица Г.1 – Таблица регистров

Таолица г.т — Таолиц			
Регистры	Обозначение в скрипте	Обозначение	Пояснение
30001	T_out	Твн, °С	Температура внешнего воздуха
30002	T_pod	Тпод, °С	Температура прямого теплоносителя. Отопление.
30003	T_{obr}	Тобр, °С	Температура обратного теплоносителя. Отопление.
30004	T_{gws}	Тпр, °С	Температура прямого теплоносителя
30005	T_{obg}	Тобр, °С	Температура обратного теплоносителя
30006	Z_{pod}	Тпод.зад, °С	Заданная температура прямого теплоносителя.
30007	Zobr	Тобр.зад, °С	Заданная температура обратного теплоносителя.
30008	Z_{gws}	Тзад, °С	Заданная температура прямого теплоносителя.
30009	e _{pd}	-	Рассогласование по температуре подачи отопления
30010	e _{ob}	-	Рассогласование по температуре обратки отопления
30011	e_{pg}	-	Рассогласование по температуре подачи
30012	e _{og}	-	Рассогласование по температуре обратки
30013	a ₀₀	-	Управление 0-10В отопление
30014	a _{o1}	-	Управление 0-10В
30015	ert	-	Рассогласование на входе ПИД регулятора по отоплению
30016	u1	-	Трехпозиционное управление клапаном отопления (-1; 0; 1)
30017	er2	-	Рассогласование на входе ПИД регулятора по отоплению
30018	u2	-	Трехпозиционное управление клапаном (-1; 0; 1)
30019	T _{oba}	_	Температура обратная аварийная
30020	Zobg	-	Заданная температура обратки отопления

ООО «НПО ВЭСТ» 634009, г. Томск, ул. Мельничная, д. 45а

> Тел.: (3822) 400-733 E-mail: info@npowest.ru www.npowest.ru