

Сценарий управления

для программируемого логического контроллера ВЭСТ-02М

СИСТЕМА ПРИТОЧНОЙ ВЕНТИЛЯЦИИ С ОДНИМ КОНТУРОМ (04.03 r04)

Указания по технике безопасности

Перед эксплуатацией прибора необходимо ознакомиться с настоящим руководством. К эксплуатации, монтажу и техническому обслуживанию контроллера допускаются квалифицированные лица, которые имеют право осуществлять данные работы в соответствии с установленной практикой и стандартами техники безопасности.

Контроллер является источником опасного производственного фактора – напряжение в электрических цепях, замыкание которых может произойти через тело человека.

Не открывайте контроллер, не производите подключение проводов, если питающее напряжение контроллера не отключено.

После отключения питающего напряжения на клеммах в течении 10 секунд может оставаться опасный потенциал.

Если питание контроллера отключено, на других клеммах контроллера может остаться напряжение от других внешних источников.

Оглавление

Введение	4
1 Программируемый логический контроллер ВЭСТ-02М	
1.1 Индикация	5
1.2 Управление	5
2 Описание FBD-логики системы приточной вентиляции с одним контуром	
2.1 Пульт дистанционного управления	7
2.2 Алгоритм работы сценария	7
2.3 Аварии	
3 Отслеживание температуры	
3.1 Поддержание температуры обратного трубопровода	
4 Управление приточным вентилятором	9
Приложение А. Схема системы приточной вентиляции	
Приложение Б. Схема подключения прибора	11
Приложение В. Программируемые параметры	13
Приложение Г. Таблица регистров	

Введение

Вентиляционная система — совокупность устройств для обработки, транспортировки, подачи и удаления воздуха.

Настоящее руководство по сценарию управления вентиляционной системы предназначено для ознакомления обслуживающего персонала с устройством, принципом действия, конструкцией, технической эксплуатацией и обслуживанием блока управления автоматического регулятора ВЭСТ-02М (в дальнейшем по тексту именуемого «прибор» или «ВЭСТ-02М»).

Управление работой вентиляционной системой производится регулятором, который располагается в щите управления и обеспечивает автоматическое регулирование температуры приточного воздуха.

Прибор программируется для работы с одним из типовых сценариев на этапе выпуска производителем. Самостоятельное составление сценариев возможно на графическом языке программирования FBD (с помощью функциональных блоковых диаграмм) в бесплатной программной среде «АКИАР» производства ООО «НПО ВЭСТ».

В процессе работы сценарий может быть доработан и улучшен, могут быть добавлены новые пункты меню, новые функции. Данное руководство соответствует сценарию **VEST_02M_04_03** (на контроллере: **скрипт: 04.03 r04**).

Дата последней редакции руководства: 07.05.25 года.

Для обновления прибора до последней версии сценария можно обратиться в службу поддержки НПО ВЭСТ:

e-mail: info@npowest.ru

e-mail: konstr.info@npowest.tom.ru

тел.: +7-913-875-59-04 +7 (3822) 400-733

сайт: www.npowest.ru

Если при чтении данного руководства у вас возникли вопросы или нашли неточности, сообщите пожалуйста об этом на почту: **konstr.info@npowest.tom.ru** или напишите нам в телеграмме по номеру телефона: **+7 913-101-74-40** или отсканировав QR-код:

1 Программируемый логический контроллер ВЭСТ-02М

1.1 Индикация

Светодиодные индикаторы на лицевой панели прибора (см. руководство по эксплуатации автоматического регулятора ВЭСТ-02М) в случае данного «сценария» сигнализируют о следующем:

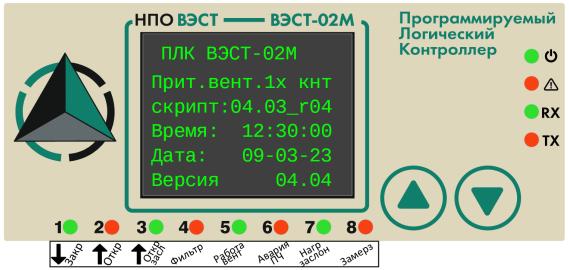


Рисунок 1. Лицевая панель ПЛК ВЭСТ-02М

- **1** закрытие регулирующего клапана отопления;
- **2** открытие регулирующего клапана отопления;
- 3 открытие заслонки;
- клапана 4 засор фильтра (фиксация светодиода);
 - 5 работа системы вентиляции (вкл. вентилятора);
 - **6** авария ПЧ;
 - 7 прогрев заслонки;
 - 8 замерзание фильтра (фиксация светодиода);

७ – индикатор работы ПЛК;

△ – общая авария, формируется скриптом управления, внештатная авария;

RX/TX – приём/передача данных через СОМ порт.

1.2 Управление

Управление прибором производится при помощи сенсорных/нажимных кнопок, расположенных на лицевой панели прибора.

При подаче напряжения питания на прибор через 5 секунд на дисплее появляется главное меню (по умолчанию – с отображением текущего времени и дня недели):

Сенсорные/нажимные кнопки управления имеют следующее функциональное назначение:

	, -
	горизонтальный переход назад по разделам главного меню, горизонтальный
	переход по пунктам в пределах выбранного раздела. Изменение значения
	выбранного параметра в сторону увеличение;
	горизонтальный переход вперед по разделам главного меню, горизонтальный
\triangle	переход по пунктам в пределах выбранного раздела. Изменение значения
	выбранного параметра в сторону уменьшения;
^ \	одновременное нажатие: вертикальный переход из раздела в пункты, вход в
\triangle	режим изменения значения параметра и сохранение данных изменений.

Уважаемый пользователь! Сенсорные/нажимные кнопки для увеличения или уменьшения параметров работают следующим образом: правая стрелка увеличивает параметр, левая стрелка уменьшает параметр.

Будьте внимательны, направление стрелок указывает на направление перемещения по разделам меню.

Нюанс в использовании сенсорных кнопок присутствует в регуляторах, которые были выпущены до конца 2024 года.

Сенсорные/нажимные кнопки реагируют в том случае, если нажатие на них происходит в течении 0,5-0,7 секунд. Такое управление необходимо, чтобы прибор успевал понять, нажата одна кнопка или две одновременно.

Прибор автоматически осуществляет возврат в главное меню, если после выбора любого из разделов, пунктов меню прибора, вход в режим изменения значения параметра пользователь не производит нажатия любой из кнопок в течение 25 секунд. Автоматический возврат не осуществляется, если пользователь перевел прибор в режим изменения параметра измеренных значений.

2 Описание FBD-логики системы приточной вентиляции с одним контуром

Управление вентиляцией реализовано с помощью алгоритма FBD-логики (Function Block Diagram). На рисунке ниже представлен сценарий управления приточной вентиляцией, демонстрирующий работу системы в соответствии с заданной логикой.

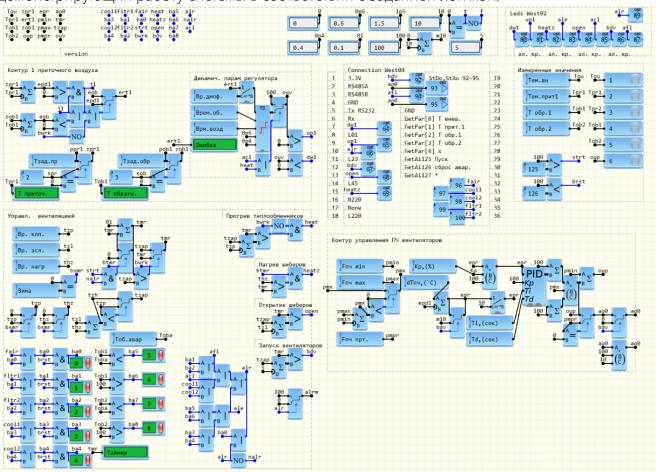


Рисунок 2 – FBD-логика системы приточной вентиляции

Такой подход обеспечивает чёткое и автоматизированное выполнение команд поддерживая комфортные параметры воздушной среды.

Система вентиляции запускается по таймеру (**таймер** = $t_{3acn} + t_{harp}$). Таймер складывается из времени открытия заслонки и нагрева, данные действия выполняются приблизительно 40 секунд.

2.1 Пульт дистанционного управления

Пульт дистанционного управления подключается через тумблер **«Стоп/Пуск»**. Выбор между **Дистанционным/0/Местным** управлением осуществляется переключением соответственного трёхпозиционного тумблера.

2.2 Алгоритм работы сценария

- 1) Выбрать тип управления с помощью трёхпозиционного тумблера **«Дистанционное/0/Местное»**.
- 2) Произвести пуск установки переключая тумблер «Стоп/Пуск».
- 3) Пуск клапана ТС, открывается до уровня 40°.
- 4) Пуск электропривода заслонки, с помощью контроллера.
- 5) Пуск вентилятора через преобразователь частоты (ПЧ).

2.3 Аварии

В данной системе вентиляции предусмотрены следующие аварийные ситуации:

- 1) Заморозка калорифера. Данная авария повлечёт за собой срабатывание этапов сценария в обратной последовательности.
- 2) Пожар. Данная авария повлечёт за собой полную остановку системы. Для того чтобы сбросить данную аварию необходимо нажать на кнопку на щите «Сброс аварии» и повторить этапы сценария.
- 3) Засорение фильтра. При данной аварии на ПЛК загорится 4-ый светодиод, сигнализирующий **аварию**.
 - 4) Авария на ПЧ.

3 Отслеживание температуры

3.1 Поддержание температуры обратного трубопровода

Также необходимо отслеживать температуру обратной воды, которая подходит к двум калориферам.

При регулировании температуры воды в подающем трубопроводе контролируется и температура обратной воды, возвращаемой в теплоцентраль, обеспечивая защиту системы от превышения ею заданного значения ${\bf T^3}_{{\bf o6p}}$.

Поддержание T^3_{06p} является приоритетным по отношению к регулированию T^3_{nod} . т.к. при перегреве воды в обратном трубопроводе приводит к штрафам от энергоснабжающей организации.

Заданное значение температуры теплоносителя в обратном трубопроводе T^3_{o6p} , является величиной переменной и вычисляется по графику $T^3_{o6p} = f(T_{hapyx})$ (рисунок 4), который установила энергоснабжающая организация.

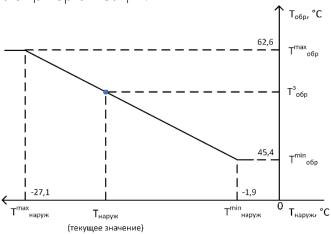


Рисунок 3. Определение заданной температуры обратной воды системы водоснабжения

Данный температурный график задается двумя точками с координатами:

Т^{min}_{наруж} (**Твн.min**) – минимум температуры наружного воздуха;

 T^{min}_{obp} (**To6p.min**) — минимум температуры обратной воды;

 T^{max}_{hapyx} (Tвн.max) — максимум температуры наружного воздуха;

 T^{max}_{obp} (**Тобр.max**) — максимум температуры обратной воды.

Если в процессе работы температура обратной воды по какой-либо причине превысит значение $\mathbf{T}^{\max}{}_{\mathbf{06p}}$, вычисленное по графику (рисунок 4), то система начнёт закрывать подачу горячей воды в калориферы.

4 Управление приточным вентилятором

Приточный и вытяжной вентиляторы управляются с помощью ПЧ (преобразователь частоты аналогового сигнала) в диапазоне 40...70%. Данные вентиляторы включаются за 5 минут, до начала полного старта.

Управление вентиляторами происходит частотным приводом, потому что целевая температура в помещении может не достигнуть желаемой. Управляя насосом, можем изменить скорость потока воздуха и достигнуть желаемой температуры.

Частотой оборотов вентиляторов можно управлять в ручном режиме, т.е. если значения частот $\mathbf{F}_{\mathbf{n}\mathbf{u}\ \mathbf{n}\mathbf{p}\mathbf{t}}$. и $\mathbf{F}_{\mathbf{n}\mathbf{u}\ \mathbf{n}\mathbf{p}\mathbf{t}}$. не нулевые, то обороты вентилятора постоянные и соответствуют той частоте, которую выставили.

Приложение А. Схема системы приточной вентиляции

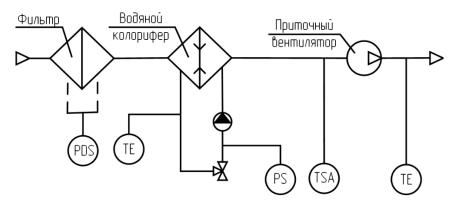


Рисунок А.1 – Структурная схема системы приточной вентиляции

Обозначения:

PDS – датчик перепада давления;

ТЕ – датчик температуры;

PS – датчик-реле давления;

TSA – термостат защиты от замораживания

Приложение Б. Схема подключения прибора

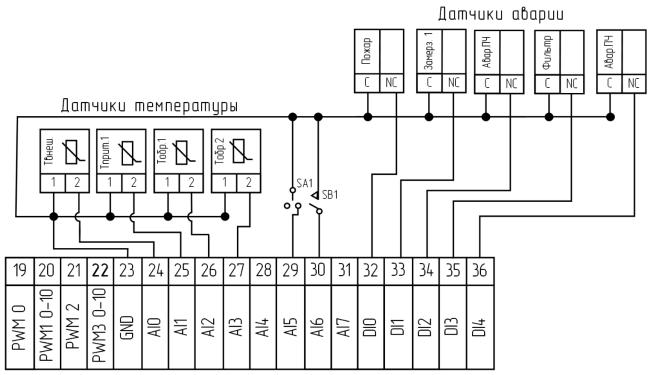


Рисунок Б.1 – Схема подключения верхней клеммной колодки

Примечание: если нет какого-либо датчика, то вместо него ставится перемычка.

Обозначения:

AIO (клемма 24) – температура на улице (Твнеш.);

Al1 (клемма 25) – температура приточки (Тприт.);

Al2 (клемма **26**) — защита по t° обратного теплоносителя (Тобр.1);

AI3 (клемма 27) – к обратному теплоносителю 2-го контура (Тобр.2);

АІ7 (клемма 31) – запасной (резервный) вход.

SA1 (клемма 29) — стоп/пуск;

SB1 (клемма 30) – сброс аварии.

DIO (клемма 32) – внешний сигнал о том, что начался пожар, система автоматически отключается и закрываются все шибера;

DI1 (клемма 33) – датчик замерзания калорифера (8-ой светодиод);

DI2 (клемма 34) – датчик аварии ПЧ (6-ой светодиод);

DI3 (клемма 35) – перепад давления в фильтре приточного канала, сигнализирует о том, что фильтр засорился, необходимо провести профилактические работы;

DI4 (клемма 36) – датчики, сбрасывающие в исходное состояние систему с последующей попыткой перезапуска системы.

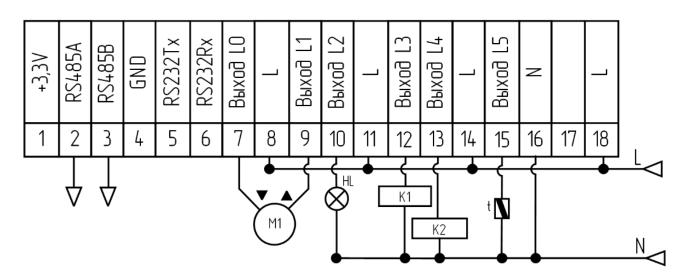


Рисунок Б.2 – Схема подключения нижней клеммной колодки

Обозначения:

M1 – электропривод регулирующего клапана подачи теплоносителя на калорифер (клеммы 9 – открыть, 7 – закрыть);

HL (клемма 10) — лампочка аварии. Данная лампочка загорается при срабатывании аварий на 32, 34 и 36 клеммах на верхней клеммной колодке;

К1 (клемма 12) – запуск вентиляторов;

К2 (клемма 13) - открытие шиберов;

t (клемма 15) – прогорев заслонки.

Приложение В. Программируемые параметры

Таблица В.1 – Программируемые параметры сценария

Единин Диодоон Зиононио до					
Обозначение	Комментарий	Единицы измерения	Диапазон значений	Значение по умолчанию	
	1-й Контур п	рит			
Т приточ.	Температура приточного воздуха	°C	-	Измеренное	
Тзад.пр Заданная температура приточного воздуха		°C	035	20	
Т обратн.	Температура обратной воды	°C	-	Измеренное	
Тзад.обр Заданная температура обратной воды		°C	560	45,5	
Динамически	е параметры регулятора				
Вр.дмпф.	Время усреднения	сек.	0,526	5	
Врем.об.	Время объекта	сек.	201000	45	
Врм.возд	Время воздействия	сек.	0,5250	8	
Ошибка	Разность заданной и измеренной температуры подачи	единиц.		Расчетное	
	Управл. вен	IT.			
Вр. клп.	Время хода привода	C.	101000	40	
Вр. зсл.	Время открытия заслонки	сек.	1100	7	
Вр. нагр	Время нагрева	сек.	103200	15	
Зима			0255,0	1	
Таймер	Таймер= Вр. зсл.+ Вр. нагр	единиц.	-	Измеренное (39,4)	
Тоб. авар		единиц.	560	15	
	Управл. ПЧ в	вент.			
Fпч min	Минимальная частота вращения ПЧ вентилятора	%	0100	40	
Fпч max Максимальная частота вращения ПЧ вентилятора		%	0100	70	

Продолжение таблицы В.1

Обозначение	Комментарий	Единицы измерения	Диапазон значений	Значение по умолчанию
Частота оборотов вентилятора Глч прт. приточного воздуха (ручное управление)		%	0100	0 (любое заданное)
Допустимая температура понижения приточного воздуха dTпч, ('C) при условии, что контура теплообменника не справляются с нагревом воздуха		°C	0,513,2	5
Кр, (%)	Коэффициент передачи (пропорциональная составляющая для настройки динамики процесса)		203000	200
Ті, (сек)	интегральная составляющая для настройки динамики процесса		203000	45
Тd,(ceк) Дифференциальная составляющая для настройки динамики процесса		сек.	025,5	0
	Измеренные	знач		
Тем.вн	Внешняя температура	°C	-	Измеренное
Тем.прит1 Температура приточки первого контура		°C	-	Измеренное
Т обр.1 Температура обратной воды 1		°C		Измеренное
Т обр.2 Температура обратной воды 2		°C	-	Измеренное

Приложение Г. Таблица регистров

Таблица Г.1 – Таблица регистров

Регистры	Обозначение в скрипте	Обозначение	Пояснение	
30001	Tou	Тем.вн	Внешняя температура	
30002	Tpr1	Тем.прит1	Температура приточки первого контура	
30003	Tob1	Т обр.1	Температура обратного воздуха первого контура	
30004	Tob2	Т обр.2	Температура обратного воздуха второго контура	
30005	zpr1	-	Заданная температуры приточки первого контура	
30006	ert1	Ошибка	Ошибка контура первого теплообменника	
30007	zob1	-	Заданная температура обратного воздуха первого контура	
30008	oup	-	Скорость оборотов вентиляторов	
30009	epr	-	Рассогласование	
30010	pmin	Fпч min	Минимальная мощность вращения ПЧ вентилятора	
30011	pmax	Fпч max	Максимальная частота вращения ПЧ вентилятора	
30012	pmpr	Fпч прт.	Мощность ручной установки (мануал) приточного воздуха	
30013	ao0	%	Выходное значение мощности приточного воздуха	
30014	tmr	-	Таймер запуска системы	
30015	tzap	-	Время запуска	

ООО «НПО ВЭСТ» 634009, г. Томск, ул. Мельничная, д. 45а Тел.: (3822) 400-733

E-mail: info@npowest.ru www.npowest.ru